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Abstract

Understanding the temporal dynamics of high-dimensional, time-varying systems
is a fundamental challenge across scientific disciplines. Existing methods primarily
model the temporal evolution of sensor readouts while often assuming that the
correlations between different components of the observed signal are static or
neglecting them entirely. However, in many real-world systems, these interactions
are dynamic, adding substantial complexity to the extraction of meaningful rep-
resentations and the design of downstream models. In this work, we introduce a
novel multi-resolution framework for analyzing temporal sequences of Symmetric
Positive Semi-Definite (SPSD) matrices, such as correlation matrices. Our method
constructs a hierarchical representation by recursively applying similarity and dif-
ference operators, respecting the underlying Riemannian geometry of the SPSD
manifold. We further employ spectral analysis to identify subgroups that drive
correlational dynamics. By extracting these key sub-networks, we denoise the
signal and, importantly, promote the interpretability of time-varying systems. We
validate our approach using both synthetic data and real neural recordings across
modalities, including Calcium imaging and EEG, and at different scales, from local
dendritic networks to cortical-level networks. Our results show that the proposed
method extracts meaningful structures from complex temporal datasets and offers
new insights into evolving network connectivity in high-dimensional systems.

1 Introduction

In many real-world experiments, we collect large-scale recordings of dynamic signals in an effort to
uncover the underlying structure of the system that generated them. The challenge becomes even
more profound when the intrinsic properties of the system, such as connectivity patterns governing
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dynamics, or functional organization, evolve over time. In such cases, modeling both the observed
signals and the dynamics of the underlying structure is essential for gaining meaningful insights.

In neuroscience, for example, learning induces plastic changes in the connectivity between neurons
and brain regions to optimize behavioral performance. Synaptic plasticity cannot be directly measured
in behaving animals. Instead, researchers use correlations between neural recordings, estimated using
short segments of the data, as proxies for functional connectivity [4, 19, 14, 2, 39, 1]. This motivates
the study of correlation dynamics as a means to identify which sub-networks are actively driving
change and are thus most involved in learning-related reorganization.

A fundamental challenge is that correlation matrices are Symmetric Positive Semi-Definite (SPSD)
and lie on a non-Euclidean manifold, making standard linear operations inapplicable in this space.
Recent work has leveraged Riemannian geometry to perform tasks such as temporal analysis [35, 3,
16, 17], feature selection [9], and deep learning [20, 40, 25, 32]. Notably, [35] proposed a Riemannian
wavelet-like framework based on the recursive application of the Riemannian mean as a low-pass
filter. However, their method does not support recursive high-pass filtering, thus dramatically limiting
the frequency resolution of the decomposed signal.

We address this gap by introducing a multi-resolution, time-frequency analysis for a temporal
sequence of SPSD matrices. Our key innovation is a difference operator that preserves symmetry and
positive semi-definiteness, allowing both low-pass and high-pass operations to be recursively applied
on the manifold. This yields a Haar-like, multi-scale decomposition on the Riemannian manifold.
Using this representation, we further propose a spectral method for identifying which components of
the original observed signal drive the correlational dynamics. Our contributions are:

• A novel difference operator for SPSD matrices that preserves manifold structure.

• A theoretical characterization of the spectral behavior and stability of the difference operator.

• A multi-scale decomposition of SPSD matrices based on recursive application of Haar-like
filtering on the SPSD manifold.

• A spectral algorithm for identifying dynamic drivers of correlational change.

By extending signal processing tools to the SPSD manifold, we provide a principled and scalable
framework for multi-resolution temporal analysis of structured, symmetric data. We validate our
method on both synthetic and real neural data, including Calcium imaging (both dendritic and
somatic), widefield cortical recordings, and EEG. Our method uncovers key elements involved in
correlational reorganization, offering interpretable and biologically relevant insights.

2 Related works

2.1 Time-varying graphs

Time varying graphs have emerged as powerful tools for capturing such dynamic relationships and
have been successfully applied in diverse domains, including social networks [30, 41, 7, 23], traffic
forecasting [42, 27], recommender systems [31, 12], and neuroscience [36]. Recent developments
have leveraged neural network architectures to model temporal graphs, achieving impressive empirical
results. However, many of these methods overlook a key geometric structure: when interactions are
symmetric, i.e., graph edges are bidirectional, the resulting connectivity matrices are SPSD.

2.2 Dynamics of functional connectivity for neuroscience

Understanding connectivity mechanisms in the brain has been a growing focus in neuroscience
[18, 8, 29, 26]. Recent studies have explored functional connectivity between cells and brain regions
and their relationship to behavioral and cognitive states [34, 33]. These works refer to functional
connectivity as a static entity by averaging over large segments of data, corresponding to a specific
state [22]. Graph theory methods are widely used by the fMRI community for the study of functional
connectivity [21, 38]. Much of the existing work tracks specific features of the network, informing
the individual role of each node to the rest of the network [6]. However, this type of analysis does
not capture the structure of the overall network, as it collapses functional connectivity into a set of
centrality scores.
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Other works combine graph theory with Riemannian geometry to explore the relation between the
dynamics of functional connectivity and behavior. For example, [4] shows that spontaneous behavior
can be meaningfully represented through the dynamics of the correlation between cortical brain
regions. [19] investigates the role of dopamine signaling in a cellular network organization during
motor learning. [24] utilizes the Riemannian mean to classify different human activities during task
performance based on EEG recordings. While gaining meaningful insights and improving model
robustness, these works are limited in the sense that they are unable to identify the key elements
driving changes in the correlational structure of the networks.

2.3 Multi-resolution Riemannian analysis

Wavelet transforms have long been a fundamental tool for multiscale analysis [13], yet extending
them to Riemannian manifolds poses significant challenges. The work by [35] is a notable advance in
this direction, defining two key operators between SPSD matrices: a similarity operator that preserves
shared structural components and a difference operator that captures differences between them. This
method has a key limitation: the difference operator maps to the tangent space, and its output is not
guaranteed to remain within the manifold. Consequently, it cannot be applied recursively, and the
decomposition must rely solely on repeated low-pass operations. This precludes the construction of a
full wavelet packet transform and limits the resolution at which dynamic features can be identified.
Our approach overcomes this limitation by introducing a novel difference operator that yields an
SPSD matrix as output. This key property enables both low-pass and high-pass filtering to be applied
recursively without leaving the Riemannian manifold.

3 Methods

3.1 Problem formulation

Let x[t] ∈ Rd be observations of a time-varying system. We assume the intrinsic properties of the
system vary slowly so that pairwise interactions between components of x[t] are approximately
constant within a short time window of Tw samples. We slide this window along the observed time
series and extract a series of correlation matrices {Cn}Nn=1, where n denotes the segment index. This
sequence of SPSD matrices represents the temporal evolution of the correlational structure of the
observed signal. Such data is common in neuroscience, where neural activity is recorded as subjects
learn to perform a task. The temporal index t corresponds to neural sampling rate, and the segment
index n corresponds to behavioral epochs such as trials, for example.

Two central questions arise: 1) Can we identify a low-dimensional representation for the sequence of
matrices to infer specific dynamics? 2) Which components in the original high-dimensional space
drive these dynamics? The first question is typically answered using Riemannian Geometry [5] and
manifold learning techniques such as diffusion map [10]. The second question is more challenging.
Most nonlinear and Riemannian embedding methods are not interpretable, as they typically do
not offer a well-defined mapping between points in the original high-dimensional space and their
representations in the embedded space. To address this, we introduce a principled multi-resolution
framework, inspired by Wavelet Packet Decomposition (WPD), that enables interpretable analysis of
SPSD matrix sequences while preserving Riemannian structure.

3.2 Low-pass and high-pass filtering on the SPSD manifold

A key aspect of WPD is the choice of low-pass and high-pass filters, where Haar filters are a common
choice[13]:

hLP [n] =

√
2

2
[1, 1] , hHP [n] =

√
2

2
[−1, 1] (1)

Inspired by eqn. (1), we construct our decomposition based on a similarity and a difference operator,
both preserving SPSD properties. Let W1 and W2 be two SPSD matrices. Let γ (p) be the geodesic
connecting them, meaning that W1 = γ (0) and W2 = γ (1). We follow [35] and use the similarity
operator, defined by the midpoint on the geodesic:

W1#W2 ≜ γ(0.5) = W0.5
1

(
W−0.5

1 W2W
−0.5
1

)0.5
W0.5

1 (2)
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Figure 1: (A) A schematic illustration of the geodesic connecting two matrices where the similarity
operator is positioned at the midpoint, while the difference operator extends the geodesic such that
W2 becomes the midpoint between W1%W2 and W1. (B) An illustration of the proposed analysis:
recursive application of low-pass and high-pass filters, followed by down-sampling by a factor of
two.

Applying this operator to a sequence of SPSD matrices results in the Riemannian mean of every
consecutive pair:

CLP
n = Cn#Cn+1, ∀n = 1, ..., N − 1 (3)

We note that the filtered sequence, CLP
n , is also SPSD, since every matrix is the mid-point on the

geodesic between two other SPSD matrices. This property is fundamental, since WPD is based on the
recursive application of these filters. Analogous to the Haar high-pass filter, we propose the following
difference operator:

W1%W2 ≜ γ(2) = W0.5
1

(
W−0.5

1 W2W
−0.5
1

)2
W0.5

1 (4)

Proposition 1. For any pair of SPSD matrices W1 and W2, the geodesic can be extended from
γ(−∞) to γ(∞). Moreover, the SPSD manifold is geodesically complete. [5]

Proposition 1 ensures that the resulting matrix is indeed SPSD, allowing us to apply it recursively.
Figure 1A illustrates the geometric interpretation: the similarity operator lies at the midpoint of the
geodesic. In contrast, the output of the difference operator is the extension of the geodesic such that
W2 is the midpoint, thus making the similarity and difference operators mutually inverse. (See a
formal proof of Proposition 2 in Appendix 7.2.) We note that this operator is not symmetric, meaning
that in general, W1%W2 ̸= W2%W1. Importantly, our spectral analysis shows that this operator
enhances differences between W1 and W2 (Sec. 4, Theorems 1-4). We, therefore, use it to define
the following high-pass operation:

CHP
n = Cn%Cn+1, ∀n = 1, ..., N − 1 (5)

We further explore the effect of the similarity and difference operators as low- and high-pass filters
and their resemblance to the classical (Euclidean 1D) Haar wavelet functions in Appendix 7.4.

3.3 Riemannian multi-resolution decomposition

Inspired by standard WPD, we extract a multi-resolution decomposition of a sequence of SPSD
matrices. Given a temporal sequence of N SPSD matrices, we apply the low- and high-pass operators
defined in eqns. (3) and (5), followed by down-sampling by a factor of two. This splits the sequence
of matrices into low- and high-frequency sequences, each of length N/2. Recursively repeating this
process for log2(N) steps results in a hierarchical decomposition where the last level consists of a

series of SPSD matrices corresponding to N frequency bins denoted by
{
Ĉf

}N

f=1
, as illustrated in

Fig. 1B. In the next section, we utilize this decomposition and propose an algorithm for detecting
elements driving the dynamics.
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3.4 Detection of dynamics drivers

Our proposed decomposition yields a sequence of matrices, each corresponding to a frequency bin.
In this section, we propose a spectral analysis algorithm to detect informative bins and identify which
components of x[t] drive this dynamics. First, we extract the dominant eigenvector ψf corresponding
to the largest eigenvalue:

Ĉfψf = λfψf (6)

For each eigenvector, we quantify how informative it is using the normalized entropy of its absolute
values:

hf ≜ − 1

log d

d∑
i=1

pf (i) log pf (i) , pf (i) =
|ψf (i)|∑d
i=1 |ψf (i)|

(7)

We then select frequency bins by retaining eigenvectors with low entropy and lower frequency
index, as these typically represent structured slow dynamics. Next, we apply k-means (k=2) to
each eigenvector to classify its components into high- or low-absolute value. Finally, we compute
the voting score for each component across the high-value cluster and identify elements that are
consistently voted for as dynamic drivers. This process is summarized in Algorithm 1.

Algorithm 1 Riemannian Multi-Scale Decomposition for Dynamics Detection
Require: SPSD matrix sequence Cn of length N, cutoff frequency fcutoff , cutoff entropy hcutoff

and a voting threshold M .
1: Construct wavelet packet decomposition:
2: for k = 1 to log2(N) do
3: for each node in level k − 1 do
4: Apply low-pass and high-pass filtering using eqns. (3) and (5)
5: Downsample the resulting signals by 2
6: end for
7: end for
8: for each frequency bin f do
9: Extract the eigenvector corresponding to the highest eigenvalue. eqn. (6).

10: Compute the normalized entropy hf using eqn. (7).
11: end for
12: Create a subset of eigenvectors {ψ∗

f} = {ψf |f < fcutoff , hf ≤ hcutoff}
13: Apply k-means to each retained eigenvector to yield an indicator such that 1f [i] = 1 if the

element i in frequency bin f was clustered with the high absolute value and 1f [i] = 0 otherwise.

14: Identify the dynamic drivers subset. D = {i|
∑

f 1f [i] > M}

We demonstrate the complete pipeline on a controlled synthetic dataset in Section 5.1, highlighting
how the proposed decomposition and dynamic driver detection recover the underlying structure.

4 Spectral analysis

In this section, we provide a theoretical analysis of the spectral behavior of the low-pass (#) and
high-pass (%) operators. Specifically, we demonstrate how the shared and distinct structures of the
input SPSD matrices are reflected in the spectra of the filtered matrices, and we provide further
analysis on the stability of the operators under small perturbations.

4.1 Strictly common components

The first two theorems discuss the case where W1 and W2 share a common eigenvector ψ, but with
different eigenvalues.

Theorem 1. Let ψ be an eigenvector of both W1 and W2 with eigenvalues λ1 and λ2, respectively:
W1ψ = λ1ψ, W2ψ = λ2ψ. Then ψ is also an eigenvector of the similarity operator S =
W1#W2, with eigenvalue: λS =

√
λ1λ2.
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This result, first shown in [35], implies that the low-pass operator preserves the spectral structure of
shared components. If ψ is dominant in both matrices, it remains dominant in their geometric mean.
Theorem 2. Under the same assumptions as above, ψ is also an eigenvector of the high-pass operator
Q = W1%W2, with eigenvalue: λQ = λ−1

1 λ22.

Proof. See Appendix 7.1.

This shows that the high-pass operator amplifies differences in eigenvalues between the two matrices.
That is, if two matrices share a component ψ but with differing strength (λ1 ̸= λ2), then ψ is
highlighted in Q.

Together, these theorems reveal that low-pass filtering emphasizes commonly expressed structure,
while high-pass filtering emphasizes variation, supporting their use in multi-scale correlational
analysis.

4.2 Stability under weak perturbations

In practice, shared structure across matrices may only be approximate. The following analysis
demonstrates that our operators are stable under small perturbations in shared eigenvectors, indicating
that they behave well in the presence of noise. We denote the ϵ-pseudo-spectrum, which captures
how eigenvalues shift under perturbations as defined by [37]:
Definition 1. Let W ∈ RN×N , the following definitions of the ϵ-psuedo-spectrum are equivalent for
a small ϵ > 0:

1. The set of λ ∈ R such that ∥(λI−W)−1∥ ≥ ϵ−1

2. The set of λ ∈ R such that λ ∈ Λ(W +E) for some E ∈ RN×N with ∥E∥ ≤ ϵ

3. The set of λ ∈ R such that ∥(λI−W)v∥ ≤ ϵ for some v ∈ RN with ∥v∥ = 1

The following two theorems extend our spectral results to the case of approximately common
components, showing that pseudo-eigenstructure is preserved under our operators.
Theorem 3. [35] Suppose there exists an eigen-pair (λk, ψk) of Wk for k = 1, 2 so that ψ1 =

ψ2 + ψϵ, where ∥ψϵ∥2 ≤
√
λ2

λ̃2max

√
λ1
ϵ for a small ϵ > 0, where λ̃2max = ∥W2 − λ2I∥. Then we

have:
√
λ1λ2 ∈ Λϵ(S). Specifically, we have: ∥(S−

√
λ1λ2I)ψ1∥2 ≤ ϵ, and ψ1 is a corresponding

ϵ–pseudo-eigenvector of S.
Theorem 4. Suppose there exists an eigenpair λk and ψk of Wk for k = 1, 2 so that ψ1 = ψ2 + ψε,
where ∥ψε∥2 ≤ 1

(σmax(W2W1
−1)+λ2λ

−1
1 )λ̃max

2

ε, where σmax denotes the maximum eigenvalue, for a

small ε > 0, and where λ̃max
2 = ∥W2 −λ2I∥. Then we have λ22λ

−1
1 ∈ Λε(Q). Specifically, we have

∥(Q− λ22λ
−1
1 I)ψ1∥2 ≤ ε, and ψ1 is a corresponding ε-pseudo-eigenvector of Q.

Proof. See Appendix 7.1.

These results demonstrate that our operators are robust to perturbations in shared structure—a
desirable property when working with noisy real-world data, such as neural recordings.

4.3 Implications for our framework

These theoretical results justify the core design of our method. The similarity operator (#) preserves
shared structure and suppresses noise, while the difference operator (%) amplifies subtle variations.
Their recursive application produces a multi-resolution decomposition for a sequence of SPSD
matrices. Moreover, spectral analysis provides interpretability to the structure of each frequency bin
in the decomposed sequence: dominant eigenvectors reflect coherent activity, and their entropy can
be used to identify components with consistent dominance.

5 Results

We evaluate the performance of our framework on a simulated toy dataset and several real-world
neural datasets. Due to the algorithm’s short runtime, all experiments were run on a CPU. However,
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as a function of frequency bins. (C) Voting scores across components, blue - true dynamic drivers,
gray - non-drivers. (D-F) Diffusion embedding of the sequence of matrices considering: D, all
elements (original data), E, dynamics drivers, F, non-drivers only.

our geometric low- and high-pass operators are inherently parallelizable and can be efficiently
implemented on GPUs for further acceleration.

5.1 Toy example

We construct a sequence of 20X20 SPSD matrices. Two disjoint subsets of entries (indices 1–3 and
7–9) were assigned low- and high-frequency sinusoidal dynamics, while all other off-diagonal entries
were sampled from a uniform distribution:

Cn (k, l) = 0.5 sin (2πf1n) + U (−0.25, 0.25) , k, l ∈ {1, 2, 3}, n ≤ 256

Cn (k, l) = 0.5 sin (2πf2n) + U (−0.25, 0.25) , k, l ∈ {7, 8, 9}, n > 256

Cn (k, l) ∼ U (−0.25, 0.25) , otherwise; Cn (k, k) = 1

(8)

with f1 = 4Hz and f2 = 66Hz. Applying our algorithm, we identify a distinct pattern within
the leading eigenvectors indicating elements 1-3 at 4Hz and elements 7-9 at approximately 70Hz,
as illustrated in Figure 2A. This pattern is reflected by low-entropy values in these frequencies
2B. Moreover, our framework successfully identifies the elements driving the sinusoidal dynamics,
as illustrated in Fig. 2C. We compared the original SPSD sequence to a sequence that included
components identified as dynamic drivers, and a third sequence that retained the rest of the network
(i.e., components not identified as dynamic drivers). We extracted a low-dimensional representation
for each sequence using Riemannian distances [5] and diffusion map [10] presented in Figure 2D-F.
The dynamic drivers preserved the intrinsic geometry and recovered a clean two-segment manifold
reflecting the intrinsic properties of the signal 2E. In contrast, excluding them resulted in unstructured
noise 2F. Overall, our proposed analysis successfully captured the intrinsic structure of this system,
identifying its dynamic drivers while effectively removing noise.

5.2 Dendritic networks in the primary motor cortex (M1) during motor learning

We applied our method to Calcium imaging data from 8 mice as they were trained to perform a
lever-pull task over 15 days. Regions of interest (ROIs) were manually identified from Layer 5
dendritic trees from the primary motor cortex (M1). Each trial lasted 12 seconds, with 30 trials per
session (for a more detailed description of the experimental setup, see Appendix 7.5). We computed
a correlation matrix per trial across all ROIs, resulting in hundreds of SPSD correlation matrices
reflecting the correlational dynamics during learning across all training sessions. We applied the
proposed analysis and identified the dynamic drivers, i.e., a sub-group of dendrites per animal. We
then re-computed the correlation matrices using either dynamic drivers or non-drivers (the rest) and
extracted the first diffusion map component for both sequences. We evaluated the variance of the
first diffusion map component across time, as depicted in Fig. 3B: the dynamic drivers (blue) exhibit
higher temporal variability than the rest of the network (gray), suggesting their greater involvement
in functional reorganization during learning (p=0.002, Wilcoxon rank-sum). To assess the behavioral
relevance of the dendrites identified as dynamic drivers, we trained a linear model to predict lever
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Figure 3: Dendritic networks during motor learning: (A) Example field of view from the Calcium
imaging data, where white streaks indicate dendritic activity. (B) Variance across sessions of the
first diffusion map component, average across 8 animals, showing the significantly greater temporal
variability captured by the dynamic drivers compared to the rest. (C) Model accuracy R2 for
predicting lever position from neuronal activity across all training days, considering dynamics driving
ROIs (blue), non-driving ROIs (gray). Normalized by theR2 score achieved by all ROIs. For B and C,
error bars indicate mean ± SEM, n=8 animals. Large population networks during motor learning:
(D) Example field of view from Calcium imaging data, where white circles indicate neuronal activity
of cell bodies. (E) Percentage of time windows in which outcome separation was detected (p-value <
0.01, permutation testing). Widefield Calcium imaging during audio discrimination:(F) Example
data (one frame) for widefield Calcium data overlayed with the Allen Mouse Brain CCF. (G+H) The
first two components of diffusion map, taking dynamic drivers, G, or non-drivers,H. Colors stand for
the session index. (I) Importance score of each component on the mouse brain.

position based on the temporal activity of the dynamic drivers or based on non-drivers. As shown in
Fig. 3C, dynamic drivers achieved higher R2 values across sessions and animals compared to the
non-drivers. This result indicates that the sub-population of dynamic drivers during learning was also
involved in the emergence of behavioral encoding of the task.

5.3 Large population networks in M1 during motor learning

We next analyzed a high-density Calcium imaging dataset tracking the activity of 178 neurons in
layer 2/3 of M1 during 7 sessions of training for a hand-reach task (for a detailed description of
the experimental setup, see Appendix 7.6). Previous work showed that learning induces global
network reorganization and emergence of outcome encoding, but did not isolate the responsible
subpopulations [19]. Using our method, we identified 91 neurons (out of 178) as dynamic drivers in
the 30 lowest-frequency bins. We quantified outcome separation using either dynamic drivers or the
rest of the network using a PCA-based sensitivity index, as performed by [19]:

dprime (t) =
∑
i

(
µi
S (t)− µi

F (t)

σi
S (t)σi

F (t)

)2

where µS and µF are the means of the i-th PC, average across successful and failed trials, respec-
tively. Similarly, σi

S and σi
F are the corresponding standard deviations. Significant separation was

determined using randomized permutation of outcome labels. We then aggregated our results over
t and counted the fraction of time (within the trial) each population had separable dynamics by
outcome, per day. Our findings show that the subpopulation identified by our algorithm as driving
the correlational dynamics also exhibited an earlier and more consistent emergence of outcome
separation, as illustrated in Fig. 3E. This supports the hypothesis that motor learning unfolds through
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Table 1: Accuracy for left-right arm classification

Subject Baseline accuracy With feature selection Number of features
selected (out of 22)

S1 84 90 10
S2 50 51 4
S3 71 85 5
S4 50 65 8
S5 50 54 10
S6 55 58 5
S7 50 52 4
S8 97 94 6
S9 92 89 9
Average 66.5 71.9 -

gradual, low-frequency changes in network dynamics and highlights the utility of our method in
identifying functional subpopulations involved in encoding behaviorally relevant variables.

5.4 Widefield imaging during learning of an audio discrimination task

We utilized our method for studying large-scale changes in correlation structure across cortical areas.
We analyzed widefield Calcium imaging data from [28], where mice learned to lick left/right in
response to auditory cues. We focused on right-hemisphere components extracted using the Allen
Mouse Brain Common Coordinate Framework (CCF) and analyzed trials where animals correctly
chose the right side. While the original paper by Musall et al. focused on fully trained expert animals,
here we analyzed the sessions preceding this stage, as the animal was trained to perform the task (see
Appendix 7.7 for a detailed description of the experimental setup). Our method identified 11 dynamic
drivers (out of 18 components). To quantify relevance to the learning process, we computed the
sequence of correlations, including either dynamic drivers or the non-drivers. As before, we extracted
a low-dimensional representation for both sequences, as depicted in Fig. 3G and H. The gradient of
colors in G, as opposed to the unordered structure in H, indicates that the sub-network of dynamic
drivers better reflects long-term changes in correlation structure throughout task learning. To quantify
this we trained a linear model for prediction of session index based on the first leading diffusion
components. Using dynamic drivers, we achieved a fair accuracy value of R2 = 0.43 while using the
non-drivers yielded a much lower value of R2 = 0.09. Using the overall network led to accuracy of
R2 = 0.25. The drivers sub-network alone captured the dynamics of the correlational embedding,
demonstrating that it identified the key cortical areas that are driving learning-related changes in
functional connectivity. Finally, we superimposed the importance scores of each component in the
network (indicating whether it is a dynamic driver or not) to its spatial location in the brain mask,
Fig. 3I. The parietal and frontal cortices emerge as key drivers of the observed correlational dynamics,
consistent with their well-established roles in learning-related processes.

5.5 EEG classification in a BCI task

To further demonstrate the versatility of our approach to different modalities and spatio-temporal
scales, we applied our framework to EEG dataset IIa from BCI Competition IV [15], focusing on
motor imagery of left vs. right hand. Each trial was band-pass filtered (8–30Hz) and correlation
matrices computed for a 3-second period starting from 0.5 secs before the go-cue. Dynamic drivers
were identified separately for each movement type. We retained electrodes identified as drivers for
either side and excluded those that were ambiguous or irrelevant. Using the selected electrodes, we
computed diffusion embeddings and trained an RBF-SVM classifier with regularization parameter
C = 0.1 to distinguish left from right. As shown in Table 1, classification accuracy on the test set
improved in 7 out of 9 subjects. This demonstrates the method’s ability to isolate task-relevant EEG
channels for improved decoding.
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6 Conclusion

We presented a novel multi-resolution framework for analyzing temporal sequences of SPSD matrices
that fully respects their underlying Riemannian geometry. By defining recursive low- and high-pass
filtering operations directly on the manifold, our method enables Haar-like wavelet packet decom-
positions of structured correlation data. Through spectral analysis of the decomposed components,
we identified dynamic drivers as sub-networks most responsible for temporal changes in correlation
structure. The successful application of our method to a different types of experimental settings and
data, demonstrate the general utility of the approach to neuroscience. Beyond neuroscience, our
framework opens new avenues for analyzing evolving structured data in domains such as finance,
climate science, and spatiotemporal graph learning. Future directions include generalizing the filter
design on the SPSD manifold and addressing the method’s reliance on consistent components across
time, a challenge in settings like neuroscience, where tracking identical cells across sessions is often
infeasible. Integrating our approach with deep learning may enable analysis of dynamic correlation
structures with partial or mismatched observations.
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7 Appendix

7.1 Proofs for spectral analysis

Theorem 2. Let ψ be an eigenvector of both W1 and W2 with eigenvalues λ1 and λ2, respectively:
W1ψ = λ1ψ, W2ψ = λ2ψ. Then ψ is also an eigenvector of the difference operator W1%W2,
with eigenvalue: λ−1

1 λ22.

Proof.

(W1%W2)ψ = W0.5
1

(
W−0.5

1 W2W
−0.5
1

)2
W0.5

1 ψ

= W0.5
1

(
W−0.5

1 W2W
−0.5
1

)2 √
λ1ψ

= W0.5
1

(
λ−1
1 λ2

)2 √
λ1ψ

= λ−1
1 λ22ψ.

Theorem 4. Suppose there exists an eigenpair λk and ψk of Wk for k = 1, 2 so that ψ1 = ψ2 + ψε,
where ∥ψε∥2 ≤ 1

(σmax(W2W1
−1)+λ2λ

−1
1 )λ̃max

2

ε, where σmax denotes the maximum eigenvalue, for a

small ε > 0, and where λ̃max
2 = ∥W2 − λ2I∥. Denote Q = W1%W2. Then we have λ22λ

−1
1 ∈

Λε(Q). Specifically, we have ∥(Q − λ22λ
−1
1 I)ψ1∥2 ≤ ε, and ψ1 is a corresponding ε-pseudo-

eigenvector of Q.

Proof. By using (10 from appendix 7.3) , we have:

Q = W1
0.5

(
W1

−0.5W2W1
−0.5

)2
W1

0.5 = (W2W1
−1)2W1.

Since ψ1 is an eigenvector of W1 with eigenvalue λ1, we obtain:

Qψ1 = (W2W1
−1)2W1ψ1 = λ1(W2W1

−1)2ψ1.

Thus, it suffices to show that ψ1 is an ε-pseudo-eigenvector of (W2W1
−1)2. By direct expansion,

we have:

W2W1
−1ψ1 = W2W1

−1ψ1 =
1

λ1
W2ψ1 =

1

λ1
W2(ψ2 + ψε).

=
λ2
λ1
ψ1 +

1

λ1
(W2 − λ2I)ψε.

This implies:(
(W2W1

−1)2 − λ22λ
−2
1 I

)
ψ1 = (W2W1

−1 + λ2λ
−1
1 I)(W2W1

−1 − λ2λ
−1
1 I)ψ1.

Multiplying both sides by λ1, we get:

(Q− λ22λ
−1
1 I)ψ1 = (W2W1

−1 + λ2λ
−1
1 I)(W2 − λ2I)ψε.

Taking the ℓ2 norm, we obtain:

∥(Q− λ22λ
−1
1 I)ψ1∥2 ≤ ∥W2W1

−1 + λ2λ
−1
1 I∥2∥W2 − λ2I∥2∥ψε∥2.

Applying the given bound on ∥ψε∥2, we conclude:

∥(Q− λ22λ
−1
1 I)ψ1∥2 ≤ ε.

Thus, λ22λ
−1
1 is an ε pseudo-eigenvalue of Q, where ψ1 is a corresponding ε pseudo-eigenvector.
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7.2 Proof mutually inverse

Proposition 2. Let W1 and W2 be SPSD matrices, the operators defined in (2)(4) are mutually
inverse, meaning:

W2%(W1#W2) = W1

W2#(W2%W1) = W1

(9)

Proof. We will first prove that W2%(W1#W2) = W1:

W1#W2 = W0.5
1 (W−0.5

1 W2W
−0.5
1 )0.5W0.5

1 = W3

W2%W3 = W0.5
2 (W−0.5

2 W3W
−0.5
2 )2W0.5

2

= W0.5
2 (W−0.5

2 W0.5
1 (W−0.5

1 W2W
−0.5
1 )0.5W0.5

1 W−0.5
2 )2W0.5

2

= W0.5
1 (W−0.5

1 W2W
−0.5
1 )0.5W0.5

1 W−1
2 W0.5

1 (W−0.5
1 W2W

−0.5
1 )0.5W0.5

1

Assume this expression equals W1:

W1 = W0.5
1 (W−0.5

1 W2W
−0.5
1 )0.5W0.5

1 W−1
2 W0.5

1 (W−0.5
1 W2W

−0.5
1 )0.5W0.5

1

W−0.5
1 (W−0.5

1 W2W
−0.5
1 )−0.5W−0.5

1 W1W
−0.5
1 (W−0.5

1 W2W
−0.5
1 )−0.5W−0.5

1 = W−1
2

W−0.5
1 (W−0.5

1 W2W
−0.5
1 )−0.5(W−0.5

1 W2W
−0.5
1 )−0.5W−0.5

1 = W−1
2

W−0.5
1 (W−0.5

1 W2W
−0.5
1 )−1W−0.5

1 = W−1
2

W−0.5
1 W0.5

1 W−1
2 W0.5

1 W−0.5
1 = W−1

2

W−1
2 = W−1

2

⇒ W1 = W2%(W1#W2)

Now, we prove that W2#(W2%W1) = W1:

W2%W1 = W0.5
2 (W−0.5

2 W1W
−0.5
2 )2W0.5

2 = W4

W2#W4 = W0.5
2 (W−0.5

2 W4W
−0.5
2 )0.5W0.5

2

= W0.5
2 (W−0.5

2 W0.5
2 (W−0.5

2 W1W
−0.5
2 )2W0.5

2 W−0.5
2 )0.5W0.5

2

= W0.5
2 ((W−0.5

2 W1W
−0.5
2 )2)0.5W0.5

2

= W0.5
2 W−0.5

2 W1W
−0.5
2 W0.5

2

= W1

7.3 Equivalent form

Proposition 3. Equivalent form of the filters. We have

W0.5
1

(
W−0.5

1 W2W
−0.5
1

)p
W0.5

1 =
(
W2W

−1
1

)p
W1

Proof. For some p ≥ 0, consider the expression:

W0.5
1

(
W−0.5

1 W2W
−0.5
1

)p
W0.5

1 .

Define the matrices:
M = W−0.5

1 W2W
−0.5
1 , M̃ = W2W

−1
1 .

Since W1 and W2 are positive definite, so is M, which implies that M and M̃ are similar via:

M = W−0.5
1 M̃W−0.5

1 .
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Figure 4: (A) Gain of the similarity operator as a function of input frequency. (B) Gain of the
difference operator as a function of input frequency.

Let ΛM and VM be the eigenvalue and eigenvector matrices of M, respectively. Then the eigenvalue
matrix of M̃ satisfies:

ΛM̃ = ΛM ,

with right and left eigenvectors given by:

VM̃
R = W0.5

1 VM , VM̃
L = W−0.5

1 VM .

Thus, we obtain the matrix powers:

Mp = VM
(
ΛM

)p (
VM

)T
,

M̃p = W0.5
1 VM

(
ΛM

)p (
VM

)T
W−0.5

1 .

From this, we conclude:
M̃p = W0.5

1 MpW−0.5
1 .

Therefore, we derive:

W0.5
1 MpW0.5

1 = W0.5
1 MpW−0.5

1 W1 = M̃pW1.

Substituting back for M and M̃, we obtain:

W0.5
1

(
W−0.5

1 W2W
−0.5
1

)p
W0.5

1 =
(
W2W

−1
1

)p
W1. (10)

7.4 Similarity and difference operators as low- and high-pass filters

In classical signal processing, low- and high-pass filters are characterized by their frequency response,
typically determined by a 3dB drop in the gain of the output signal. In this section, we extend this
concept to the SPSD setting to further demonstrate the properties of the similarity and difference
operators (eqns. (3) and (5). We simulate a set of 256 SPSD matrices of size 10× 10, where the first
three components are sinusoidal signals, and the remaining entries are a small random noise:

Wn(k, l) = 0.5 sin (2πf1n) + U(−0.01, 0.01), k, l ∈ {1, 2, 3}
Wn(k, l) ∼ U(−0.01, 0.01), otherwise
Wn(k, k) = 1, for all k
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Figure 5: (A) Schematic of the experimental setup: a head-fixed mouse performs a lever pull task
during 2-photon Calcium imaging. Each trial lasts 12 seconds, where a go-cue is given after 4
seconds. Lever position crossing the 5mm threshold is rewarded with a sweetened drop of water
delivered by a water spout. (B) Example field of view from the calcium imaging data, where yellow
lines indicate ROI labeling of dendritic activity. (C) Success rate (mean±SEM) of 8 mice performing
the lever-pull task across training days, showing an increase in performance with training.

where U(a, b) denotes a uniform distribution in the range [a, b], and f1 is the sinusoidal frequency.

Analogous to classical 1D filters, we measure the spectral response of the filters by comparing the
gain of the sequence before filtering, {Wn}Nn=1, to the gain of the sequence after filtering, {Un}Nn=1,
as a function of the frequency f1. We note that all matrices in the input signal have one dominant
component. If filtering rejected the sinusoidal components, the filtered output would consist of noise
alone, meaning there would be no dominant component. Following this logic, we propose taking the
ratio between the dominance of the largest eigenvalue before and after filtering as a measure of the
gain of the filter. Formally, the dominance of the first eigen-component of a matrix, A, is:

DA = 1− λ1
Tr(A)

(11)

where, λ1 is the largest eigenvalue of A and Tr(A) is the trace of A. Given the two sequences of
matrices we thus take the average ratio of dominance values before and after filtering:

G =
N∑

n=1

20 log10
DUn

DWn

(12)

We computed the gain of both similarity and difference operators as a function of frequency by
varying the f1, as depicted in Figure 4. The gain of the similarity operator aligns with the behavior of
the Haar low-pass filter, preserving low frequencies and rejecting high frequencies. In contrast, the
proposed difference operator matches the behavior of the Haar high-pass filter, emphasizing high
frequencies.

7.5 M1 dendritic structures data set

In this longitudinal experiment, eight mice were trained to perform a motor task during 15 sessions.
Each trial lasted 12 seconds, during which an auditory go cue was given four seconds into the trial,
prompting the animals to pull the lever. Pulls that surpassed a preset displacement threshold were
rewarded by a drop of sweetened water delivered to the animal’s mouth through a water spout. Lever
position was sampled at 150 Hz, yielding millisecond-resolution kinematic traces. Throughout every
session, simultaneous two-photon Calcium imaging (30 Hz) was conducted to monitor the apical
tuft dendrites of 5–10 layer-5 Pyramidal Tract (L5 PT) neurons in M1 forelimb region. For stable
tracking of dendrites, a sparse labeling technique of L5 PT neurons was applied. In addition, the pons
was injected at three depths with a viral mixture comprising (i) a diluted retrograde AAV carrying Cre
recombinase, (ii) a concentrated retroAAV-CAG-FLEX-jGCaMP7s, and (iii) a concentrated retroAAV-
FLEX-tdTomato. A chronic cranial window implanted over forelimb M1 enabled repeated imaging
of the same field of view (FOV) across days. After each session, regions of interest (ROIs) were
manually annotated, preserving the identity of individual dendritic segments across all recordings.
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Figure 6: (A) Experimental setup: a head-fixed mouse performing a motor learning task during
2-photon calcium imaging. Following a go-cue, the rotating plate prompts the mouse to reach and
grasp a food pellet. Each trial lasts 12 seconds, including a 4-second pre-cue phase. (B) Example
field of view from the Calcium imaging data. (C) Success rate (percentage of successful trials) of
the analyzed mouse across training sessions. Motor proficiency improves over days and plateaus by
session 5.
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Figure 7: (A) Schematic of the widefield imaging setup for cortex-wide functional imaging. Imaging
was performed through the intact, cleared skull. (B) Imaging data was aligned to the Allen CCF using
4 anatomical landmarks. Cortical activity, measured as relative changes in measured fluorescence,
could then be related to the activity of cortical areas (white lines). (C) Learning curves of mice,
trained in the auditory discrimination task. Animals achieved expert task performance within 10-20
sessions of behavioral training.

7.6 Large population in M1 data set

A brief description of the experimental setup is provided below. For comprehensive details, see [19].
In this experiment, head-fixed mice were trained to perform a hand-reach and grasp motor task, Fig.
6. Training took place over seven sessions, during which the neuronal activity of pyramidal neurons
(PNs) in layer 2-3 of M1 was recorded using two-photon Calcium imaging. Chronic Calcium imaging
was performed with the genetically encoded Calcium indicator GCaMP6s, which was injected via
a viral vector injection into the M1 forelimb area. Layer 2-3 Pyramidal Neurons were selectively
labeled using a specific promoter (CaMKII). A chronic window was then implanted over the M1
forelimb area, allowing for imaging of activity over long periods. At each imaging session, Regions
Of Interest (ROIs) with approximately the same Field Of View (FOV) were imaged to track the
activity of the same cell population across days. Recordings were conducted at a sampling rate of 30
Hz over 12-second trials, with an average of 40-50 trials per session. Registration of FOVs across
sessions and ROIs extraction were performed manually. The dataset used in our analysis included
seven sessions from one publicly available control animal, comprising the activity of 178 neurons
over seven training sessions.
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7.7 Widefield dataset

Comprehensive details of the widefield imaging are provided in [28] and [11]. Widefield imaging
was done with an inverted tandem-lens macroscope and a sCMOS camera (Edge 5.5, PCO) running
at 30 frames per second and a field of view of 12.5 x 10.5 mm2 (Fig. 7A). Imaging resolution was
640 × 540 pixels after 4× spatial binning, resulting in a spatial resolution of about 20 µm per pixel.
Mice were Ai93D;Emx-Cre;LSL-tTA animals, expressing the Calcium indicator GCaMP6f in all
excitatory cortical neurons. All imaging data were then rigidly aligned to the Allen Mouse Brain
Common Coordinate Framework (CCF), using anatomical landmarks, to allow for inferring the
activity of different cortical areas over the course of task learning (Fig. 7B). Accurate atlas alignment
was further confirmed using retinotopic mapping, showing high agreement of functionally inferred
locations of visual areas.

During widefield imaging, head-fixed mice were trained in an auditory discrimination task, where
two sequences of Poisson-distributed click sounds were presented to either the left or right side of the
animal for 1 to 1.5 seconds. After the stimulus and a subsequent 0.5-long delay period, mice had to
perform a licking response on the side where more clicks were presented to obtain a water reward.
The auditory discrimination task, therefore, required the accumulation of the auditory information
over time and working memory to obtain high task performance (Fig. 7C). Animals were trained
between 30 and 40 sessions, and we analyzed changes in cortical correlation structure over the course
of task learning. Results here include cortex-wide population activity recorded from all training
sessions of one animal out of four included in the full dataset.
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